Social Impact Evaluation in Innovation Projects via STATA, Methods: Instrumental Variable Estimation, Regression Discontinuity, Choice of Method to Use
Keywords:
Impacto social, Stata, Variable instrumental, Regresión discontínuaSynopsis
In the business and industrial world, the design and implementation of projects typically take into account the economic, financial, and even political or environmental impact when introducing innovations. However, in the first two decades of the 21st century, various events have demonstrated that social impact assessment in generating well-being is of vital importance.
In fact, in the times of the new normalcy anticipated as the Post-COVID-19 era, this becomes particularly relevant since all policies and actions issued by companies and governments must have the necessary endorsement of a social impact assessment for the introduction of innovations.
For this reason, the work: "Social Impact Assessment in Innovation Projects Via STATA. Methods: Instrumental Variable Estimation, Regression Discontinuity, Choice of Method to Use VOLUME II," is aimed at describing both to those familiar and unfamiliar with the subject, what social impact is, its characteristics, conditions, and implications, the main methods used to calculate it, as well as the opportunities that emerge in the Post-COVID-19 era, demanding that the resources and actions of innovation to be designed and implemented reflect high standards of social impact to promote well-being, particularly in emerging countries.
To achieve this, this work is divided into a collection of two volumes, corresponding to Volume II:
Chapter 6. Instrumental Variable Estimation (IV). In this chapter, the reader is briefed on the types of estimations, the two-stage least squares approach, what imperfect compliance entails, and weak instruments in estimates, marginal treatment effect significance, and random promotion in the technique, a checklist. The chapter closes with the scope and limitations, as well as an application example in STATA.
Chapter 7. Regression Discontinuity (RD). This chapter is designed to present the theory of discontinuity regression, both sharp and fuzzy, the steps involved in its application, possible variations, verifying the validity of the design, advantages and disadvantages of the technique, comparisons with others (pipeline), limitations, and scope of the technique, a checklist. An example using STATA is included.
Chapter 8. Choice of Method to Use. Given the variety of techniques to be used and to help the reader identify the most suitable one, this chapter is designed to explain the importance of determining comparison groups, the implication of what is prospective, and how to create a comparison group, identifying beneficiaries and prioritizing them. This serves as a basis for comparing and supporting impact evaluation methods, meaning determining the minimum unit of intervention, how to achieve it, and avoid implementation difficulties. Given human intervention, it is perceived how behavior intervenes and its unintended effects, imperfect compliance, indirect or spillover effects, and sample attrition. Design suggestions are provided as well as taking into account effects and their persistence over time. Likewise, the possibility of combining various treatment options in impact evaluation at different levels of treatment is explained, as well as adapting to multiple intervention evaluations.
Chapter 9. Sample Selection and Data Collection Design. In order to support a project prospect, the elements are provided here to determine the sample from the most well-known sampling methods, which involves calculating sample power as well as treatment vs. comparison groups. Potential errors to be avoided are cited, defining what statistical power is and how to calculate it, the meaning of clusters related to random assignment, recommendations for collecting data and making them measurable.
Chapter 10. Project Management Guidelines for Impact Evaluation. In this chapter, the importance of innovation projects in social impact is highlighted, how society becomes more involved and participatory in innovation project stages, the specification of the company and its social commitment, and in general, UN Sustainable Development Goals and community capital. With this as a reference, the components of the impact evaluation management team are specified, suggesting how to establish collaborations and determining both a schedule and a budget for an impact evaluation project management project.
Chapter 11. Social Impact Assessment in the Post-COVID-19 Era. Finally, the work concludes with an overview of the COVID-19 phenomenon globally as well as its economic impact, international trade, and the internet. For Latin America and the Caribbean, opportunities for social impact assessment in the introduction of innovations in health, education, employment, poverty, and SMEs are described. It concludes with a report on the global post-COVID-19 future, the social impact of COVID-19 in Mexico, as well as the operational structure and strategies against COVID-19, which form the basis for the introduction of social impact assessment in the introduction of innovations in the Post-COVID-19 era.
Downloads
References
AIEI (2015). Evaluación de Impacto Social: Lineamientos para la evaluación y gestión de impactos sociales de poryectos. Asociación Inter- nacional para la Evaluación de Impactos. Banco Interamericano de desarrollo, en: https://www.iaia.org/pdf/Evaluacion-Impacto-Social- Lineamientos.pdf
Angelucci, M. y Di Maro, V. (2015). Programme Evaluation and Spillover Effects. Journal of Development Effectiveness (doi: 10.1080 /19439342.2015.1033441).
Banerjee, A.; E. Duflo. (2009). The Experimental Approach to Development Economics.Annual Review of Economics 1: 151–78.
Bernal, R. y Peña X. (2011). Guía práctica para la evaluación de impacto. Perú: Universidad de los Andes: Facultad de Economía.
CGIB (2019). Pesquisa sobre o uso das Tecnologias de Informação e Comunicação nas escolas brasileiras – TIC. Educação 2018.Comité Gestor de Internet en Brasil, São Paulo, en: https://www.cgi.br/publi- cacao/pesquisa-sobre-o-uso-das-tecnologias-de-informacao-e-comu- nicacao-nas-escolas-brasileiras-tic-educacao-2018/
CONEVAL (2020). La política social en el context de la pandemia por el virus SARS-CoV-2 (COVID-19) en México. México: Consejo Nacional de Evaluación de la Política de Desarrollo Social, en: https://www.coneval.org.mx/Evaluacion/IEPSM/Documents/Poli- tica_Social_COVID-19.pdf
DRALE (2020). Diccionario de la Real Academia Española, en: https:// www.rae.es/
DOF (2020). Decreto por el que se establecen las medidas de austeridad que deberán observar las dependencias y entidades de la Administración Pública Federal bajo los criterios que en el mismo se indican, Diario Oficial de la Federación, en: https://www.dof.gob.mx/nota_ detalle.php?codigo=5592205&fecha=23/04/2020
Duflo, E.; Glennerster, R.; y Kremer, M.( 2008). Using Randomization in Development Economics Research: A Toolkit. In Handbook of Development Economics, vol. 4, ed. T. Paul Schultz and John Strauss, 3895–962. Amsterdam: North-Holland.
FAO/PMA (2019). Fortaleciendo los programas de alimentación escolar: el trabajo conjunto de FAO y WFP en América Latina y el Caribe. Organización de las Naciones Unidas para la Alimentación y la Agri- cultura/Programa Mundial de Alimentos. Panamá, en: https://es.wfp. org/publicaciones/fortaleciendo-los-programas-de-alimentacion-es- colar-el-trabajo-conjunto-de-fao-y-wfp
Gertler, P. J.; Martínez, S.; Premand, P.; Rwlings, L. B. y Vermeersch, Ch. M. J. (2017). La evaluación de impacto en la práctica 2a. ed. Washington, D.C.: Banco Interamericano de Desarrollo y Banco Mundial.
Heckman, J. J.; Ichimura, H. y Todd, P. (1997). Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme. Review of Economic Studies 64 (4): 605–54.
Heckman, J. J. y Robb, R. (1985). Alternative Methods for Estimating the Impact of Interventions.In Longitudinal Analysis of Labor Market Data, ed. James Heckman and Burton Singer, 156–245. New York: Cambridge University Press.
Heckman, J. J. y Vytlacil, E. J. (2000). Local Instrumental Variables. NBER Technical Working Paper 252. National Bureau of Economic Research, Cambridge, M A.
Heckman, J. J. y Vytlacil, E. (2005). Structural Equations, Treatment Effects, and Econometric Policy Evaluation. Econometrica 73 (3): 669–738.
Imbens, G. y Angrist, J. (1994). Identification and Estimation of Local Average Treatment Effects. Econometrica 62 (2): 467–76.
Khandker, S. R. (2006). Microfinance and Poverty: Evidence Using Panel Data from Bangladesh.World Bank Economic Review 19 (2): 263–86. Khandker, S. R.; Koolwal, G. B. y Samad, H. A. (2017). The Handbook on Impact Evaluation. Quantitative Methods and Practices. Washington, D. C.: The Worldbank.
King, E. M. y Behrman. J. R. (2009). Timing and Duration of Exposure in Evaluations of Social Programs. World Bank Research Observer 24 (1): 55–82.
Lee, D. (2009). Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects. Review of Economic Studies 76 (3):1071–1102.
Mejía-Trejo, J. (2011). Estudios del Futuro Tecnológico: definiciones hacia un modelo conceptual de prospectiva. México: CUCEA, en: http://www.cucea.udg.mx/sites/default/files/documentos/adjuntos_pagina/estudios_del_futuro_tecnologico_definiciones_hacia_un_modelo_ conceptual_de_prospectiva_0.pdf
Mejía-Trejo, J. (2019a). Técnicas Dependientes con SPSS, en: https://buk. com.mx/9786079878207/description
Mejía-Trejo, J. (2019b). Diseño de Cuestionarios y Creación de Escalas. Uso del EQS en las ciencias económico administrativas, en: https:// buk.com.mx/9786075384672/description
Moffitt, R. (2008). Estimating Marginal Treatment Effects in Heteroge- neous Populations. Economic Working Paper Archive 539, Johns Hopkins University, Baltimore, MD, en: http://www.econ.jhu.edu/ people/moffi tt/welfl s0_v4b.pdf
OIT (2020). Covid-19 y el mundo del trabajo: repercusiones y respuestas. Organización Internacional del Trabajo, en: https://www.ilo.org/ wcmsp5/groups/public/---dgreports/---dcomm/documents/briefing- note/wcms_739158.pdf.
OMS (2017). Global Health Expenditure. Organización Mundial de la Salud, en: https://apps.who.int/nha/database/Select/Indicators/en.
ONU CEPAL (2015). La Agenda 2030 y los Objetivos de Desarrollo Soste- nible Una oportunidad para América Latina y el Caribe. Santiago,Chile: ONU, Comisión Económica para América Latina y el Caribe,
en: https://www.un.org/sustainabledevelopment/es/
ONU CEPAL (2019). Panorama Social de América Latina. ONU, Comisión Económica para América Latina y el Caribe, en: https://www.cepal.org/es/publicaciones/44969-panorama-social-america-latina-2019 ONU CEPAL (2020a). Informe Especial COVID-19 América Latina y el Caribeante la pandemia del COVID-19. Efectos Económicos y Sociales. ONU, Comisión Económica para América Latina y el Caribe, en: https://www.cepal.org/es/publicaciones/45337-america-latina-caribe-la-pandemia-covid-19-efectos-economicos-sociales ONU CEPAL (2020b). Dimensionar los efectos del COVID-19 para pensar en la reactivación. ONU, Comisión Económica para América Latina y el Caribe, en: https://www.cepal.org/es/publicaciones/45445-dimensionar-efectos-covid-19-pensar-la-reactivacion
OPS (2019) Indicadores básicos 2019: Tendencias de la salud en las Américas. Organización Panamericana de la Salud, en: https://iris.paho.org/handle/10665.2/51543
OPS (2020) Actualización epidemiológica: dengue. Organización Panamericana de la Salud, en: https://www.paho.org/hq/index.php? option=com_docman&view=download&category_slug=dengue- 2158&alias=51692-7-de-febrero-de-2020-dengue-actualizacion-epi- demiologica-1&Itemid=270&lang=es
PDR (2020). Nada nos hará regresar al pasado, afirma presidente al presentar informe al pueblo de México. Comunicado de Prensa 6 de abril de 2020, en: Recuperado de https://www.gob.mx/presidencia/ prensa/nada-nos-hara-regresar-al-pasado-afirma presidente-al-pre- sentar-informe-al-pueblo-de-mexico?idiom=es-MX
Ravallion, M. (2008). Evaluating Anti-Poverty Programs. In Handbook of Development Economics, vol. 4, ed. T. Paul Schultz and John Strauss, 3787–846. Amsterdam: North-Holland.
RAO, V. y Woolcock, M. (2003). Integrating Qualitative and Quantitative- Approaches in Program Evaluation en: F. J. Bourguignon y L. Pereira da Silva, The Impact of Economic Policies on Poverty and Income Distribution: Evaluation Techniques and Tools: 165–90. Nueva York: Oxford University Press.
Semykina, A. y Wooldridge. J. M. (2005). Estimating Panel Data Models in the Presence of Endogeneity and Selection: Theory and Application. Working Paper, Michigan State University, East Lansing, MI.
Todd, P. (2007). Evaluating Social Programs with Endogenous Program Placement and Selection of the Treated. In Handbook of Development Economics, vol. 4, ed. T. Paul Schultz and John Strauss, 3847–94. Amsterdam: North-Holland.
Downloads
Published
Series
Categories
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.