Creation of Scales in Management Sciences

Authors

Juan Mejía-Trejo
Profesor Investigador Titular B CUCEA-Universidad de Guadalajara
https://orcid.org/0000-0003-0558-1943
Gonzalo Maldonado Guzmán
Research-Professor at Universidad Autónoma de Aguascalientes (UAA), Aguascalientes, Aguascalientes, México
https://orcid.org/0000-0001-8814-6415

Keywords:

Escalas, Administración

Synopsis

Achieving recognition and credibility in scientific research results depends on which strategy best clarifies and justifies the measurement technique used. Thus, it is possible to propose various strategies that allow for the development and refinement of measurements; however, their true impact will depend on the type of scientific phenomenon being measured, both with directly observable variables and their underlying relationships. Therefore, administrative sciences should focus their interest on the formulation, design, development, and validation of constructs, both direct and underlying relationships. Particularly, this latter type of relationship involves constructs that, by representing abstractions, can only be evaluated indirectly. Indirect evaluation involves the design and use of multiple elements (in our case, indicators) that measure the construct, i.e., "propose the scale for measurement." Thus, starting from a specific research problem and characterizing the factors, variables, and indicators that best describe it in the form of constructs, the main objective of this document is to propose and design the relationships of these factors, variables, and indicators to discuss how to measure and validate them through the creation of scales.

To achieve this objective, Chapter 1 justifies and emphasizes the importance of scale development theory by explaining key and basic concepts such as dimensionality, reliability, and validity. Additionally, the importance of the four-step approach in scale development involving these three concepts is highlighted. Chapters 2, 3, and 4 discuss each of these key concepts in greater detail. Chapters 5, 6, and 7 emphasize and detail the four-stage approach and provide relevant empirical examples for each step.

Particular emphasis is placed on exploratory and confirmatory factor analysis. The four-stage approach is based on the precedent of multiple scale development works by various authors (Churchill, 1979; Clark & Watson, 1995; DeVellis, 1991; Haynes, Nelson, & Blaine, 1999; Nunnally & Bernstein, 1994; Spector, 1992).

It is worth noting that the design of a scale based on constructs that ultimately define a model is the foundation of scientific research, which is primarily iterative rather than linear. This means that, instead of following linear or consecutive steps and activities like a logical and sequential process, the suggested scale development process tends to be strongly iterative and continuous, where "all scale development procedures are restarted." This is because researchers, being aware, learn from their efforts and mistakes, making revisions necessary, including those at early stages such as the definition of factors, variables, and indicators at a conceptual level, as well as the definition of construct dimensionality.

Downloads

Download data is not yet available.

Author Biographies

Juan Mejía-Trejo, Profesor Investigador Titular B CUCEA-Universidad de Guadalajara

Dr. Juan Mejía Trejo
He is born in 1964 in CDMX, México.
As professional experience:
1986-1987. Quality Department Control in KOKAI Electrónica S.A.
1987-2008. Former Internal Plant Exploitation Manager at Teléfonos de México S.A.B. Western Division.
As academic experience :
1987. He earned his degree in Communications and Electronics Engineering from the Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional (ESIME at the IPN)
2004. He earned his master’s in Telecommunications Business Administration from INTTELMEX and France Telecom.
2010. He earned his doctorate in Administrative Sciences from the Escuela Superior de Comercio y Administración (ESCA at the IPN)
2011.He is a member of the Sistema Nacional de Investigadores (SNI) Level I of the Consejo Nacional de Ciencia y Tecnología (CONACYT) , México.
2010 to the present, he is Titular Research Professor B at the Department of Marketing and International Business at the Universidad de Guadalajara, México.
2018-2020. He earned his master’s in Valuing Business in the Centro de Valores S.C. México.
2019.He earned Level II of the SNI/CONACYT
2015-2022.He earned the Coordination of the Doctorate in Management Sciences at the Universidad de Guadalajara.

Currently, he is the founder of the AMIDI (Academia Mexicana de Investigacion y Docencia en Innovación SC) (https://amidi.mx/) as well as founder and editor-in-chief of the scientific journal Scientia et PRAXIS (https://scientiaetpraxis .amidi.mx/index.php/sp)
https://orcid.org/0000-0003-0558-1943

His line of research is Innovation Management, publishing articles and books that can be found on the Internet.
Email: jmejia@cucea.udg.mx

Dr. Juan Mejía Trejo
Nacido en la CDMX (1964).México.
Con experiencia profesional:
1986-1987. Departamento de Control de Calidad KOKAI Electrónica S.A.
1987-2008.Gerente de Explotación de Planta Interna en Teléfonos de México S.A.B. División Occidente.
Con experiencia académica:
1987 obtiene su licenciatura en Ingeniero en Comunicaciones y Electrónica de la Escuela Superior de Ingeniería Mecánica y Eléctrica del Instituto Politécnico Nacional (ESIME del IPN)
2004 egresa como Maestro en Administración Empresas de Telecomunicaciones por el INTTELMEX y France Telecom.
2010 obtiene su grado como Dr. en Ciencias Administrativas de la Escuela Superior de Comercio y Administración (ESCA del IPN)
2011 Ingresa al Sistema Nacional de investigadores Nivel I del CONACYT
2010 a la actualidad es Profesor Investigador Titular B en el Departamento de Mercadotecnia y Negocios Internacionales, de la Universidad de Guadalajara, México.
2018-2020 egresa como Maestro en Valuación de Negocios en Marcha por el Centro de Valores , S.C. México.
2019 Actualización en el Sistema Nacional de Investigadores como Nivel II
2015 a 2022 Coordinador del Doctorado de Ciencias de la Administración de CUCEA de la Universidad de Guadalajara.

2019 a la fecha, es fundador de la AMIDI (Academia Mexicana de Investigación y Docencia en Innovación SC) (https://amidi.mx/) así como fundador y editor responsable de la revista científica Scientia et PRAXIS (https://scientiaetpraxis.amidi.mx/index.php/sp)

Línea de Investigación la Administración de la Innovación, realizando publicaciones de artículos y libros localizables en Internet.

ORCID: https://orcid.org/0000-0003-0558-1943
email: jmejia@cucea.udg.mx

Gonzalo Maldonado Guzmán, Research-Professor at Universidad Autónoma de Aguascalientes (UAA), Aguascalientes, Aguascalientes, México

Research-Professor at Universidad Autónoma de Aguascalientes (UAA), Aguascalientes, Aguascalientes, México

References

Anderson, J.C.y Gerbing, D.W.(1988).Structural equation modeling in practice:a review and recommended two-step approach.Psychological Bulletin,1(3),411- 423.

Allen,S.J.y Hubbard,R.(1986).Regression equations of the latent roots of random data correlation matrices with unities on the diagonal. Multivariate Behavioral Research, 21, 393-398.

Anastasi, A. y Urbina, S. (1998). Psychological testing. Englewood Cliffs, NJ: Prentice-Hall.

Arbuckle, J. L. (2003). Amos 5.0 [Computer soware]. Chicago, IL: SPSS.

Bagozzi, Richard P. y Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science Spring, 16 (1), 74-94.

Bagozzi,R.P.y Heatherton,T.F.(1994).Ageneralapproachtorepresentingmulti- faceted personality constructs: Application to state self-esteem. Structural EquationModeling,1(1),35-67. .

Bagozzi, R. P., Yi, Y. y Phillips, L. W. (1991). Assessing construct validity in organizational research. Administrative Science Quarterly, 36 (3), 421-458.

Bearden, W. O., Hardesty, D. y Rose, R. (2001). Consumer self-confidence: refinements in conceptualization and measurement. Journal of Consumer Research, 28 (june), 121-134.

Bearden,W.O.y Netemeyer,R.G.(1998).Handbookofmarketingscales:Multi-item measures for marketing and consumer behavior research. ousand Oaks, CA: Sage.

Bearden, W. O., Netemeyer, R. G. y Teel, J. E. (1989). Measurement of consumer susceptibility to interpersonal influence. Journal of Consumer Research, 15 (march), 473-481.

Bearden,W.O.,Sharma,S.y Teel,J.E.(1982).Samplesizeeffectsonchi-squareand other statistics used in evaluating causal models. Journal of Marketing Research, 19 (november), 425-430.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107 (2): 238-246

-----(2006). EQS 6.1. Structural Equations Program Manual. CA: Multivariate Soware Inc.

----- y Bonnet, D. G. (1980). Significance tests and goodness of fit in analysis of covariancestructures.PsychologicalBulletin,88(3),sep.-dec.,pp. 588-606.

-----y Chou,C.(1987).Practicalissuesinstructuralmodeling.Sociological Methods y Research,16(1),78-117.

Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wileyy Sons.

----- y Lennox, R. (1991). Conventional wisdom on measurement: A structural equations perspective. Psychological Bulletin, 110, 305-314.

Boyle, G. J. (1991). Does item homogeneity indicate internal consistency or item redundancy in psychometric scales? Personality and Individual Differences, 3, 291-294.

Brown,T.A.(2006).Confirmatoryfactoranalysisforappliedresearch.NewYork: e Guilford Press.

Browne,M.W.y Cudeck,R.(1993).Alternativewaysofassessingmodelfit.InK.A.

Bolleny J.S.Long(Eds.).Testingstructuralequationmodels(pp.136-162).Newbury Park, CA: Sage.

Bruner,G.y Hensel,P.(1997).Marketingscaleshandbook:Acompilationofmulti- item measures. 2nd ed. Chicago: American Marketing Association.

Byrne, B. M. (2001). Structural equation modeling with AMOS: Basic concepts, applications,andprogramming.Mahwah,NJ:LawrenceErlbaum Associates.

----- (2005a). Factor analytic models: Viewing the structure of an assessment instrument from three perspectives. Journal of Personality Assessment, 85, 17-30.

----- (2005b). Factor analysis confirmatory. In B. S. Everitt y D. C. Howell (Eds.). Encyclopedia of Statistics in Behavioural Science, pp. 599-606. London, UK: Wiley. -----(2006).StructuralEquationModelingwithEQS,basicconcepts,applications, and

programming. London: LEA Publishers.

Calder,B.J.,Phillips,L.W.y Tybout,A.M.(1982).econceptofexternalvalidity.

Journal of Consumer Research, 9 (december), 240-244.

Campbell, D. T. (1960). Recommendations for APA test standards regarding

construct, trait, or discriminant validity. American Psychologist, 15, 546-553. -----y Fiske,D.W.(1959).Convergent and discriminant validity by the multitrait- multimethod matrix. Psychological Bulletin, 56, 81-105.

Carver, C. S. (1989). How should multi-faceted personality constructs be tested?

Issues illustrated by self-monitoring, attributional style, and hardiness. Journal of Personality and Social Psychology, 56 (4), 577-585.

Cattell, R. B. (1966). e meaning and strategic use of factor analysis. In R. B. Cattell

(Ed.), Handbook of multivariate experimental psychology (pp. 174-243). Chicago: Rand McNally.

Chau, P. Y. K. (1997). Reexamining a model for evaluating information center success using a structural equation modeling approach. Decision Sciences, 28 (2), 309- 334.

Chou, C.-P., Bentler, P. M. y Satorra, A. (1991). Scaled test statistics and robust

standard errors for nonnormal data in covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 44, 347-357.

Hu, L.-T., Bentler, P. M. y Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351-362.

Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16 (february), 64-73.

Churchill, G. A. y Iacobucci, D. (2002). Marketing research methodological Foundations. 8th ed. Fort Worth, TX: Harcourt College Publishers.

Downloads

Published

June 30, 2018

Details about this monograph

ISBN-13 (15)

978-607-547-184-6

doi

10.55965/abib.9786075471846.2018a